The unit cells of ($\mathbf{P t e n} \mathbf{X}_{4}$) $\left(\mathbf{P t e n} \mathbf{X}_{2}\right),(\mathbf{X}=\mathbf{C l}, \mathbf{B r}, \mathbf{I})$. By K. W. Browall, J. S. Kasper and L. V. Interrante, General Electric Corporate Research and Development, Schenectady, New York 12301, U.S.A.
(Received 30 October 1973; accepted 5 March 1974)
Unit-cell data and indexed power X-ray diffraction patterns are reported for the complexes ($\mathrm{Pten} \mathrm{X}_{4}$) $\left(\operatorname{Pten} \mathrm{X}_{2}\right)$, where en $=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, I. The unit cell for the case where $\mathrm{X}=\mathrm{Br}$ has been corrected from a previous report.

In the course of characterizing mixed-valence platinum complexes of the type $\left[\mathrm{Pten} \mathrm{X}_{4}\right]\left[\mathrm{Pten} \mathrm{X}_{2}\right]$, hereafter referred to by the empirical formula Pten_{3}, where en $=$ $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ and $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, we have encountered difficulty in indexing X -ray powder diagrams on the basis of the unit cell given for PtenBr_{3} (Ryan \& Rundle, 1961), the only compound of this group for which structural data have been reported. Upon further investigation with single crystals as well as with powders, we have found that the cited lattice constants of PtenBr_{3} are in error. Accordingly, we wish to report the corrected unit cell and the indexed powder pattern for PtenBr_{3} and also the unit-cell

Table 1. Lattice constants for the Pten X_{3} complexes

Space group Ama 2			
	a	b	c
PtenCl_{3}	9.648 (6) \AA	13.441 (8) \AA A	$5 \cdot 481$ (4) \AA
Pten Br_{3}	$10 \cdot 123$ (4)	13.863 (6)	$5 \cdot 606$ (5)
PtenI ${ }_{3}$	11.029 (10)	14.329 (12)	$5 \cdot 862$ (6)

data and powder patterns for the isomorphous compounds PtenCl_{3} and PtenI_{3}.
The complexes were prepared by previously reported methods (Interrante, Browall \& Bundy, 1974), based on the procedures of Watt \& McCarley (1957a, b) and using PtenCl_{2} as the starting material. In particular, $\mathrm{Pten}^{2} \mathrm{Br}_{2}$ and PtenI_{2} were prepared from PtenCl_{2} by halide exchange (Watt \& McCarley, 1957a), and PtenBr ${ }_{4}$ and PtenCl_{4} were prepared by direct halogenation of the corresponding Pt(II) salts. The mixed-valence complexes were obtained by slow evaporation and cooling of aqueous solutions containing equimolar amounts of the $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{IV})$ complexes for the cases where $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$. The method of Watt \& McCarley (1957b) was used to prepare PtenI_{3} from $\mathrm{K}_{2} \mathrm{PtI}_{6}$ and PtenI ${ }_{2}$. An alternate method was also used to prepare PtenBr_{3} from PtenBr_{2} and $\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Br}_{4}$ (Watt \& McCarley, 1957a); the powder patterns for PtenBr_{3} prepared by the two different techniques were identical. The powder patterns for each of the Pten X_{3} compounds were in essential agreement with the partial powder patterns reported by Watt \&

Table 2. X-ray diffraction data for Pten_{3} complexes

PtenCl ${ }_{3}$			PtenBr ${ }_{3}$			PtenI ${ }_{3}$		
$d(\AA)$	I / I_{1}	$h k l$	$d(\AA)$	I / I_{1}	$h k l$	d (Å)	I / I_{1}	$h k l$
$6 \cdot 65$	100	020	$6 \cdot 84$	100	020	$7 \cdot 10$	100	020
$5 \cdot 48$	6	120	$5 \cdot 69$	20	120	5.97	68	120
			$5 \cdot 16$	17	011	$5 \cdot 43$	56	011
$4 \cdot 82$	18	200	5.06	30	200			
$4 \cdot 48$	56	111	$4 \cdot 62$	59	111	4.87	68	111
3.93	21	220	4.09	43	220	4.36	88	220
$3 \cdot 49$	5	211	$3 \cdot 63$	12	211	$3 \cdot 85$	-	211
			$3 \cdot 56$	10	031	$3 \cdot 70$	-	031
$3 \cdot 36$	7	040						
$3 \cdot 27$	7	131						
$3 \cdot 17$	7	140	$3 \cdot 27$	13	140			
						3.26	$\overline{72}$	320
2.753	24	240	2.853	37	240	3.00	72	240
2.734	18	002	2.801	37	002	2.937	64	002
2.536	8	022	$2 \cdot 600$	17	022			
			2.535	12	400	2.740	-	400
2.381	9	202	$2 \cdot 454$	30	202			
$2 \cdot 358$	18	331			151, 340	$2 \cdot 607$	40	331
			2.419	12			40	340
$2 \cdot 274$	9	420	2.386	17	420	2.558		
2.245	27	222	2.309	33	222, 060	2.441	-	222, 411
						$2 \cdot 407$	-	060
2.185	6	160				$2 \cdot 350$	-	160
2.164	8	251	2.231	10	251			
2.036	6	260	2.097	7	260	2.192 2.181	-	260
						2.181	-	322
1.967	8	440	2.048	10	440			
1.943	18	242	2.004	33	242, 351	2.093	68	242
1.847	6	520	1.952	7	520			
			1.906	7	360	2.009	-	360, 402
1.815	9	071, 402, 013				1.937	-	013
1.782	18	171,113				2.028 1.918	-	511 113

McCarley (1957b). Elemental analyses for C, H, N gave satisfactory agreement with calculated values (in parentheses): PtenCl_{3} : C $6 \cdot 8$ (6.64), H 2.3 (2.23), N 7.9 (7.75); PtenBr $_{3}:$ C $5.0(4.85)$, H $1.6(1.63)$, N 5.9 (5.66); PtenI ${ }_{3}$: C $4 \cdot 1(3 \cdot 78)$, H $1 \cdot 2(1 \cdot 27)$, $\mathrm{N} 4 \cdot 1$ (4.41). Single crystals of PtenCl l_{3} and $\mathrm{Pten}^{2} r_{3}$ were grown by slowly cooling aqueous solutions (Interrante \& Browall, 1974). The resulting crystals had a metallic sheen and were strongly dichroic.

The lattice constants in Table 1 were obtained by a leastsquares analysis of the Debye-Scherrer patterns given in Table 2 (obtained with a 114.6 mm camera radius and $\mathrm{Cu} K \alpha$ radiation). Intensities (peak heights) were obtained from densitometer traces. The space group, Ama2, was ascertained from X-ray precession photographs of single crystals of PtenBr_{3} and $\mathrm{PtenCl}{ }_{3}$ and is equivalent to that reported for the disordered structure described by Ryan \& Rundle (1961).

The lattice constants of $\mathrm{Pten}^{\mathrm{Br}}{ }_{3}$ given by Ryan \& Rundle (1961) (after interchanging a and c to bring the reported space group, $C 2 \mathrm{~cm}$, into the standard setting, Ama2) are $a=10 \cdot 12, b=14 \cdot 77, c=5 \cdot 60 \AA$. Referring to Table 1, the discrepancy between the sets of data is seen to be associated almost entirely with the value of b. It is difficult to check on the origin of the discrepancy because of an internal inconsistency in the paper by Ryan \& Rundle. The reported X-ray density of $4.027 \mathrm{~cm}^{-3}$ does not follow from their (Ryan \& Rundle, 1961) unit-cell data, which would correspond to a density of $3.93 \mathrm{~g} \mathrm{~cm}^{-3}$. Our lattice constants call for a density of $4.18 \mathrm{~g} \mathrm{~cm}^{-3}$. The measured density is 4.03 $\mathrm{g} \mathrm{cm}^{-3}$.

On the other hand, our single-crystal data appear to correspond to those of Ryan \& Rundle (1961) with respect to systematic absences and in regard to agreement of individual structure factors so that no major difference in the crystal structure is suggested by our results. One difference in the single-crystal results is that we have not been able to observe the streaking between layer lines normal to c* as
described by Ryan \& Rundle (1961). Presumably, then, this would imply more complete disorder in the arrangement of the chains that are parallel to \mathbf{c}.

It does not appear that a typographical error was responsible for the abnormally large value of b given by Ryan \& Rundle (1961), since their interatomic distances follow from their lattice constants. In particular, the molecular plane (non-chain axis) $\mathrm{Pt}(\mathrm{IV})-\mathrm{Br}$ and $\mathrm{Pt}(\mathrm{II})-\mathrm{Br}$ distances of $2.51 \AA$ are consistent with the reported b value. On the other hand, the new lattice constants indicate a value of $2.43 \AA$; this is in better agreement with the corresponding distance of 2.46 (6) \AA in the related compound, $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{4}\right]$ $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{2}\right]$ (Wallen, Brosset \& Vannerberg, 1962). The revised $\mathrm{Pten}^{2} \mathrm{Br}_{3}$ values also indicate that the in-plane $\mathrm{Br}-\mathrm{Br}$ distance is $3.54 \AA$ and the $\mathrm{Br}-\mathrm{Pt}-\mathrm{Br}$ angle is $86^{\circ} 24^{\prime}$.

The authors are grateful to Dr S. Bartram for obtaining the densitometer traces and refining the lattice parameters for the polycrystalline specimens and to the Air Force Office of Scientific Research (AFSC), United States Air Force, for financial support under contract F-44620-71-C-0129.

References

Interrante, L. V. \& Browall, K. W. (1974). Inorg. Chem. In the press.
Interrante, L. V., Browall, K. W. \& Bundy, F. P. (1974). Inorg. Chem. In the press.
Ryan, T. D. \& Rundle, R. E. (1961). J. Amer. Chem. Soc. 83, 2814-2816.
Wallen, J., Brosset, C. \& Vannerberg, N. (1962). Ark. Kem. 18, 541-551.
Watt, G. W. \& McCarley, R. E. (1957a). J. Amer. Chem. Soc. 79, 3315-3317.
Watt, G. W. \& McCarley, R. E. (1957b). J. Amer. Chem. Soc. 79, 4585-4589.

Acta Cryst. (1974). B30, 1650
A reinvestigation of the crystal and molecular structure of hexachloroborazine. A correction. By M. S. Gopinathan, M. A. Whitehead, C. A. Coulson,* J. R. Carruthers and J. S. Rollett, Theoretical Chemistry Department, 1 South Parks Road, Oxford OX1 $3 T G$, England
(Received 21 March 1974; accepted 21 March 1974)

In the paper by Gopinathan, Whitehead, Coulson, Carruthers \& Rollett [Acta Cryst. (1974). B30, 731-737] Fig. 5 represents the enantiomorph of the structure obtained from the parameters of Table 5 of the same paper.

The parameters resulting from our refinements in Table 5 (Gopinathan, Whitehead, Coulson, Carruthers \& Rollett, 1974) have been inverted through a centre of symmetry so that they can be compared with the results of Haasnoot, Verschoor, Romers \& Groeneveld (1972). In the preparation of Fig. 5 this inversion was not performed and the

[^0]figure represents the enantiomorph of the structure obtained from the parameters of Table 5.

References

Gopinathan, M. S., Whitehead, M. A., Coulson, C. A., Carruthers, J. R. \& Rollett, J. S. (1974). Acta Cryst. B30, 731-737.
Hasnoot, J. G., Verschoor, G. C., Romers, C. \& Groeneveld, W. L. (1972). Acta Cryst. B28, 2070-2073.

[^0]: * Deceased.

